UK Foundation Amateur Radio License Transmitters and Receivers

Purpose of a Transmitter

- To send information from one place to another wirelessly
- Requires taking an information signal and converting it to an RF signal

Modulation

- The process of adding information to a carrier signal
- Map the information to one (or more) of the properties of a wave
 - Frequency Modulation (FM)
 - Amplitude Modulation (AM)
 - Phase Modulation (PM)

Amplitude Modulation

- Information (baseband) signal becomes an *envelope* on the carrier signal
- Changing amplitude, constant frequency, constant phase
- Having the envelope cross zero results in distortion
 - Overmodulation

Frequency Modulation

- The information signal (baseband signal) scales the frequency
- Varying frequency, constant amplitude, constant phase

Sidebands

- When the baseband signal is shifted to the carrier frequency sidebands can be created
 - Upper Sideband (USB)
 - Lower Sideband (LSB)
- With AM, the sidebands are mirror images
 - No extra information, waste of bandwidth!
- Frequently transmitters will suppress one or the other sideband
 - Also more energy efficient! Can have a stronger signal
 - Transmitting both is called Double Sideband (DSB) or just AM, not common

Data Modulation

- Still doing AM, FM, PM, or a combination
- Information signal is digital rather than analog
- Frequency Shift Keying (FSK)
 - Group binary data into 1,2,... bit chunks
 - Map chunks to frequencies
- Can use microcontrollers or PCs

Receivers

- EM signal picked up by antenna, converted to voltage/current
- Tuned circuits (Filters) select the signal (frequencies) desired
 - Usually an RF amplifier to increase the weak signal
- Convert the modulated signal back to a baseband signal
 - Recovering the information signal by demodulating
- For an analog voice signal, amplify again and output to a speaker

Demodulators

- Must match the demodulator to the type of modulation used
 - AKA don't try to decode an FM signal with an AM demodulator
- For the exam, questions assume that AM and FM signals are analog and are output to a speaker

Software Defined Radio

- Use digital signal processing to (de)modulate
- Moves hardware processing into software
 - Easier to change, Often simpler to implement

